ПИД регулятор в Sysmac Studio. Описание.

1.Описание математической модели регулятора

Математическая модель ПИД регулятора, используемого в стандартном ФБ PIDAT в среде Sysmac Studio:

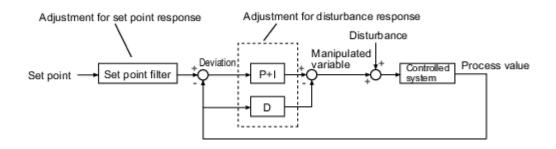


Рис.1 – Обобщенная структурная схема ПИД-регулятора

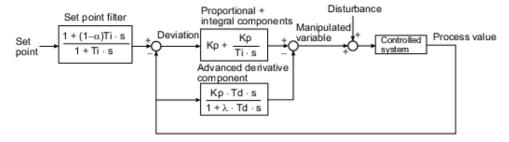
На схеме:

Set point – задание для регулятора;

Deviation – отклонение (ошибка, рассогласование), это разность между сигналом заданием и сигналом обратной связи (получаемого от датчика);

Maipulated variable – выход регулятора, управляющий объектом сигнал;

Disturbance – возмущающее воздействие;


Controlled system – объект управления;

Process value – измеряемое значение регулируемого параметра (выход объекта), он же сигнал обратной связи;

P, I, D – пропорциональная, интегральная, дифференциальная составляющие регулятора;

Set point filter – фильтрующее звено для сигнала задания.

Ниже показана та же структурная схема, но в развернутом виде:

Kp: Proportional constant

Ti: Integration time

Td: Derivative time

s: Laplace operator

a: 2-PID parameter

λ: Incomplete derivative coefficient

Рис.2 – Детальная структурная схема ПИД-регулятора

На схеме:

Кр – коэффициент усиления пропорциональной части;

Ті – постоянная времени интегрирования;

Td – постоянная времени дифференцирования;

s – оператор Лапласа (дифференцирования);

 α – коэффициент фильтра сигнала задания 0..1 (позволяет делать регулятор одинаково хорошо отрабатывающим скачки как сигнала задания, так и сигнала возмущения);

 λ – коэффициент неполной производной в усовершенствованном дифференцирующем звене.

Из приведенных схем видно, что ПИД-регулятор отличается от классического вида тем, что содержит блок фильтра для сигнала задания, а также тем, что имеет нестандартную дифференциальную часть.

2. Описание интерфейса функционального блока PIDAT

Рассмотрим применение встроенного ФБ PIDAT. Общий вид функционального блока типа PIDAT:

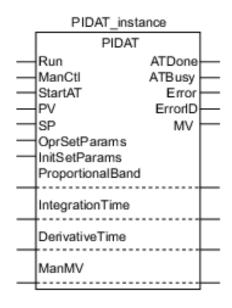


Рис. 3 – Общий вид функционального блока PIDAT

Входы блока:

Название	Расшифровка	Тип	Значение/ описание	Тип данных
Run	Флаг запуска	Input	TRUE: Выполнять FALSE: Остановить	BOOL
ManCtl	Ручное/автомат управление выходом	,5 61	TRUE: Ручное FALSE: Автомат	BOOL

StartAT	Старт автонастройки параметров ПИД	TRUE: Выполнить FALSE: Отменить	BOOL	
PV	Обратная связь от датчика объекта	-	REAL	
SP	Уставка (задание) регулятора	-	REAL	
OprSetParams	Структура – параметры работы	Параметры настраиваются в процессе работы	_sOPR_SET_PARAMS	
InitSetParams	Структура – начальные настройки	Начальные настройки	_sINIT_SET_PARAMS	

Входы-выходы блока:

Название	Расшифровка	Тип	Значение	Тип данных
Proportional band	Пропорциональн ый коэффициент		-	REAL: 0.01 to 1000.00
Integration time	Постоянная времени интегрирования		Увеличение значения ослабляет интегральную часть регулятора. При нуле интегратор отключен.	TIME: T#0.0000 s to T#10000.0000 s
Derivative time	Постоянная времени диффернцирова ния	In-out	Увеличение значения усиливает дифференциальную часть . При нуле диф.часть отключена.	TIME: T#0.0000 s to T#10000.0000 s
Manual manipulated variable	Ручной выход		Управляемый вручную выход	REAL: -320 to 320

Выходы:

Название	Расшифровка	Тип	Значение	Тип данных	
ATDone	Флаг нормального завершения автонастройки		TRUE: нормальное завершение FALSE: ошибка автонастройки	BOOL	
ATBusy	Автонастройка в процессе	Output	TRUE: Автонастройка FALSE: Автонастройки нет		
MV	Ручной выход		Управляемый вручную выход	REAL: -320 to 320	

Описание структур с параметрами **OprSetParams**, **InitSetParams**

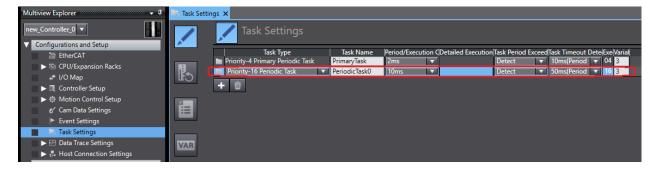
Структура_sOPR_SET_PARAMS

Название	Описание	Тип данных	Диапазон	Ед.из	По умолч.
OprSetParams	Параметры которые устанавливаются в процессе работы	_sOPR_SET_PA RAMS	ı		
MVLowLmt	Нижний предел ручного выхода	REAL	-320 320		0
MVUpLmt	Lmt Верхний предел ручного выхода REAL			%	100
ManResetVal	Значение ручного выхода при отклонении = 0 для пропорционального действия	REAL	-320320		0
MVTrackSw	Флаг слежения TRUE: ON FALSE: OFF	BOOL	-		FALSE

Название	Описание	Тип данных	Диапазон	Ед.из м.	По умолч.
MVTrackVal	Значение которое устанавливается на MV когда MV слежение включено	REAL			0
StopMV	Значение которое устанавливается на MV когда MV слежение остановлено	REAL	-320 320	%	
ErrorMV	Значение которое устанавливается на MV при ошибке	REAL			
Alpha	Коэффицент α в фильтре задания Если равен 0 то фильтр отключен	REAL	0.001.00		0.65
ATCalcGain	Коэффициент для автонастройки При большем значении предпочтение отдается устойчивости. При меньшем значении предпочтение отдается скорости реакции.	REAL	0.1 10.0		1.0
ATHystrs	Гистерезис предела цикла.	REAL		% FS	0.2

Структура _**sINIT_SET_PARAMS**

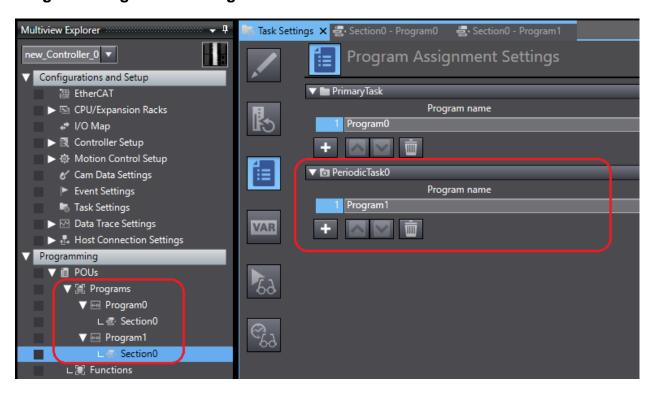
Название	Описание	Тип данных	Диапазон	Ед.изм.	По умолч.
InitSetParams	Initial setting parameters.	_sINIT_SET_ PARAMS			


Название	Описание	Тип данных	Диапазон	Ед.изм.	По умолч.
SampTime	Период пересчета ПИД регулятора	TIME	T#0.0001 s #100.0000 s	S	T#0.1 s
RngLowLmt	Нижний предел PV и SP.	REAL	- 32000		0
RngUpLmt	Верхний предел PV и SP.	REAL	32000		100
DirOpr	TRUE: прямое управление FALSE: инверсное управление	BOOL			FALSE

3. Тестовый пример в Sysmac Studio

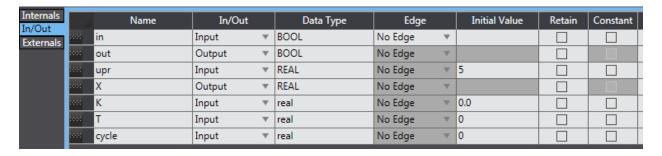
Создадим новый проект в среде Sysmac Studio для контроллера. В конкретном примере используется контроллер NJ 101-1020.

Проект будет запускаться в режиме симуляции, так как в качестве объекта управления будет использоваться пользовательский ФБ, реализующий апериодическое звено 1-го порядка (имитация простого теплового объекта). Соответственно, ПИД регулятор будет замкнут на него.

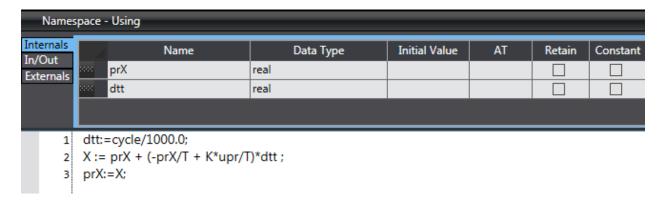

Откроем Task Settings -> Task Settings и добавим новую периодическую задачу PeriodicTask0 с приоритетом 16 и циклом пересчета в 10 мс:

Проверить, что у всех программ выставлен признак Initial Status: Run

Предполагается, что в этой новой задаче у нас будет «крутиться» ПИД-регулятор.


Далее создадим новую программу Program1 в разделе Programming. И присвоим ее новой созданной ранее задаче PeriodicTask0 в разделе Task Settings -> Program Assignment Settings :

ПИД регулятор должен чем-то управлять. Так как реального объекта у нас нет, то создадим функциональный блок, имитирующий объект управления.


Напишем функциональный блок на языке ST. Будем имитировать простой тепловой объект (типа нагреваемая емкость с водой) 1-го порядка.

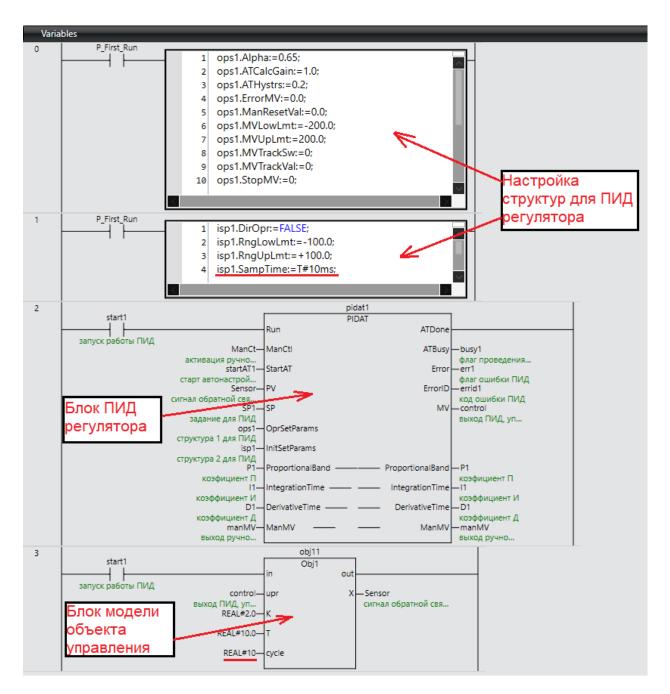
Интерфейс входов и выходов ФБ Obj1:

где upr – это управляющий вход объекта; X – это выход объекта (сигнал обратной связи, датчик); k, T – параметры объекта, его инерционность; cycle – это период пересчета задачи.

Код на языке ST блока Obj1:

Пояснение данного кода приведено в Приложении 1.

Далее можем приступать к разработке основной программы. Её мы будем писать на языке LAD в программе **Program1**. (Программу Program0 однако нельзя оставлять пустой, нужно вбить хотя бы одну простейшую цепочку).


Объявим структуры и другие переменные:

Variab	Variables									
Names	Namespace - Using									
Internals	Name	Data Type	Initial Value	ı AT	Retain	Constant	Comment			
Externals	ops1	_sOPR_SET_PARAMS					структура 1 для ПИД			
	isp1	_sINIT_SET_PARAMS					структура 2 для ПИД			
	start1	BOOL					запуск работы ПИД			
	pidat1	PIDAT					экземпляр ФБ ПИД регулятора			
	ManCt	BOOL					активация ручного управления ПИД			
	startAT1	BOOL					старт автонастройки ПИД			
	Sensor	REAL					сигнал обратной связи (датчик)			
	SP1	REAL	10				задание для ПИД			
	P1	REAL	100				коэфициент П			
	11	TIME	T#1s				коэффициент И			
	D1	TIME	T#0S				коэффициент Д			
	manMV	REAL					выход ручного управления			
	busy1	BOOL					флаг проведения автонастройки ПИД			
	err1	BOOL					флаг ошибки ПИД			
	errid1	WORD					код ошибки ПИД			
	control	REAL					выход ПИД, управляющий объектом сигнал			
	obj11	Obj1					экземпляр ФБ модели объекта управления 1 порядка			
	test_control	REAL								

Серым выделены экземпляры функциональных блоков, используемых в программе.

Также вы можете видеть предустановленные значения у некоторых переменных. Это задание (SP1=10), и три коэффициента регулятора (P1=100, I1=1 c, D1=0 c). Ограничимся ПИ-регулятором в данной тестовой программе.

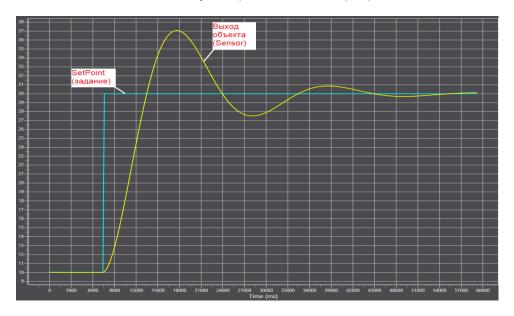
Рассмотрим код тестовой программы:

Параметр SampTime, а также вход cycle у блока модели ОУ следует указать равным 10 мс, так как период пересчета задачи Periodic Task 0 равен именно этому значению.

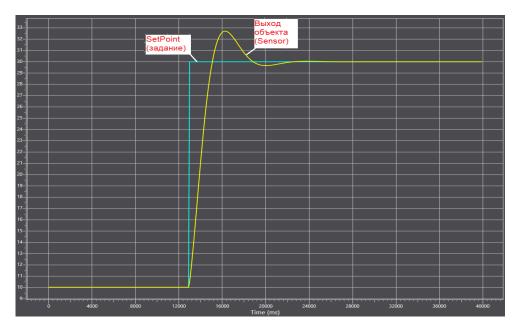
Связка ПИД регулятора и объекта осуществляется посредством следующих сигналов:

- 1) Выход регулятора **control** приходит на вход объекта (вход **upr**);
- 2) Выход объекта **X** (переменная **Sensor**) приходит на вход ПИД регулятора **PV**.

В результате получается замкнутая система.


При запуске программы ПИД регулятор остановлен.

По включению флага **start1** связка ПИД регулятор + объект начинает работать. Регулятор выводит объект на задание в 10 усл.ед.


Требуется ввести новое значение задания SP и наблюдать как регулятор его отрабатывает.

Коэффициенты P1,I1,D1 возможно изменять прямо на ходу.

1) Переходный процесс при значениях параметров P1=100, K1=1, D1=0 и при скачке задания от 10 до 30 у.е. приведены на графике:

2) Переходный процесс при значениях параметров P1=10, K1=1, D1=0 и при скачке задания от 10 до 30 у.е. приведены на графике:

Таким образом, варьируя коэффициенты ПИД регулятора можно добиться оптимального переходного процесса при отработке задания.

При включении флага **StartAT1** начинается автонастройка регулятора. В результате коэффициенты P,I,D сами изменяются. Чтобы автонастройка прошла успешнее рекомендуется подать разные задания на регулятор и дождаться завершения переходного процесса. После автонастройки следует выключить флаг **StartAD1**.

Приложение 1. Пояснение блока моделирующего объект 1-го порядка

В данном коде мы имитируем объект, которым управляет ПИД-регулятор. Мы ограничились объектом 1-го порядка, представленным в непрерывном виде в виде передаточной функции:

$$W = \frac{k}{T*s+1} \, (1)$$

где k – коэффициент усиления (определяет соотношение между амплитудой входного управляющего сигнала и выхода объекта, то есть зависит от типа сигнала датчика, который измеряет выход объекта);

T – постоянная времени (определяет инерционность объекта, то, как долго будет расти его выход при подачи управляющего входного импульса);

s – оператор Лапласа (для записи передаточной функции в частотной области) Такой моделью могут быть описаны простые тепловые объекты (чайник с водой). Записанную выше передаточную функцию можно представить в виде диф.уравнения:

$$T\frac{dx}{dt} + x = k * u$$
 (2)

где u – управляющее воздействие на объект (куда подключается выход ПИД регулятора);

х – это регулируемый параметр объекта, его выход, например температура.
 Считаем что этот параметр измеряется датчиком и в качестве обратной связи сигнал подается на вход ПИД ргулятора.

Уравнение (2) можно записать в разностном виде, если представить производную как конечную разность на малом интервале времени Δt :

$$\frac{dx}{dt} = \frac{x_i - x_{i-1}}{\Delta t}$$

Тогда уравнение (2) запишется в виде:

$$T\frac{x_{i} - x_{i-1}}{\Delta t} + x_{i-1} = k * u_{i}$$

Выразив из уравнения x_i получаем:

$$x_i = x_{i-1} + \left(-\frac{x_{i-1}}{T} + k\frac{u_i}{T}\right) * \Delta t$$

Получили рекуррентное уравнение, которое может быть запрограммировано в коде программы (см. строку 2 в тексте функционального блока).

Интервал времени $\Delta t\,$ - это интервал пересчета программы ПЛК, где исполняется ПИД регулятор.